欧美激情精品,天天射久久,扒开奶罩吃奶头gif动态视频,无码av秘 一区二区三区

泰山玻璃纖維
道生天合
華征新材料 奧德機械
當前位置: 首頁 » 復材學院 » 學術論文 » 正文

碳纖維復合材料在電動汽車車身中的應用分析

放大字體  縮小字體 發(fā)布日期:2014-04-22  瀏覽次數(shù):30
核心提示:電動汽車是當前及未來汽車的發(fā)展方向,而電池技術是目前及今后很長時間內電動汽車快速發(fā)展的最大障礙。碳纖維復合材料在汽車應用方面具有優(yōu)越的性能,使用碳纖維復合材料輕量化車身,平衡電池包、電機的重量,是未來的必然選擇,在引入方面也做了分析。

一、前言
    (一)應用背景和國家政策
      當前國際能源安全與節(jié)能環(huán)保催生了混合動力汽車和電動汽車,隨之而來的新一輪產業(yè)結構調整擺上了各大汽車廠商的日程。發(fā)展電動汽車是提高汽車產業(yè)競爭力、保障能源安全和發(fā)展低碳經濟的重要途徑。未來五年將是電動汽車研發(fā)與產業(yè)化的戰(zhàn)略機遇期。“十二五”期間,國家科技計劃將加大力度,持續(xù)支持電動汽車科技創(chuàng)新,把科技創(chuàng)新引領與戰(zhàn)略性新興產業(yè)培育相結合,組織實施電動汽車科技發(fā)展專項規(guī)劃。受到節(jié)能減排的迫切要求,歐日各大車廠均開始了新一輪應用碳纖維等高強度復合材料的努力,發(fā)展節(jié)能型汽車在當前已經成為一個課題。
我國電動汽車已經有了一定的發(fā)展,鑒于當前電池的比能量、比功率還比較低,電池發(fā)展瓶頸的克服還需要很長一段路要走??紤]到電動汽車電池的能量要求,其續(xù)駛里程短的問題更被關注,而汽車的整車重量又是影響續(xù)駛里程的一主要因素,因此除了加快電池、電機技術的研發(fā),電動汽車車身輕量化方面的研究工作也應重視,不僅是傳統(tǒng)汽車的重點研究方向,電動汽車尤其如此,這是政策和技術上容易被忽視的。經研究發(fā)現(xiàn)碳纖維復合材料有非??捎^的前景,現(xiàn)就碳纖維復合材料是否使用于電動汽車車身中加以分析。
     (二)輕量化方向
      電動汽車輕量化可以從電池技術、電機技術、車用材料和汽車結構四個方面入手。在當前電池和電機的技術水平下,最大程度的輕量化要求我們在車身結構,材料的選擇與替代兩個方面進行合理優(yōu)化,以此平衡電池包和電機的重量。
      1、結構輕量化。車身結構優(yōu)化在滿足諸如車身剛度、模態(tài)、碰撞安全、疲勞壽命和NVH等特性的同時,也必須考慮車身結構的可制造性和生產成本。在結構優(yōu)化方面,我國已經邁出了重要一步,目前車身有的結構設計已經相當成熟,優(yōu)化空間正在減小。
      2、材料輕量化。目前仍以高強度鋼、鎂、鋁和塑料作為主要汽車材料組合。在輕量化趨勢下,我們應當深化多材料組合的應用,在優(yōu)化組合的同時引入新材料,其效益不僅是輕量化結果本身,兩者的結合對整車開發(fā)技術來講也是一種進步。
       結構優(yōu)化發(fā)展較早的原因之一是未找到合適的輕量化材料替代汽車用鋼。鋁出現(xiàn)后,便以優(yōu)異的性能開始應用于車身,同時玻璃纖維伴隨其他復合材料也開始出現(xiàn)。如今,碳纖維憑借其優(yōu)越性幾乎可以完全替代鋼材料。當前已經有憑借碳纖維材料的優(yōu)異特性成功降低車重和碳排放的實例,尤其是在一些新款電動車中,人們可以找到碳纖維材料的身影。事實上,碳纖維材料在國內汽車上的應用目前僅限于某些改裝車的部件。
     (三)應用現(xiàn)狀
       我國在乘用汽車碳纖維車身方面還沒有應用性的進展,然而在重卡中已經有了突破性應用。2012年11月6日,由包頭德翼車輛有限責任公司、北京藍星和中材科技三方合作的我國首輛配裝全碳纖維復合材料箱體的8.6米自卸車在包頭問世,原金屬車廂重68噸,而碳纖維復合材料車廂重48噸,減重29%,目前結構設計相對保守,再減重潛力很大。值得一提的是,用戶可在短期1-2年內收回因復合材料的應用增加的成本,而且使用壽命是金屬車廂的4-5倍。
國外電動汽車的碳纖維車身技術已經從實驗室走向生產。雷克薩斯LFA研發(fā)團隊深入研發(fā)CFRP的生產技術,由65%的碳纖維增強塑料和35%的鋁合金材料構成的LFA車身,比同樣的鋁制車身輕100多kg,結構更堅固。寶馬于2011年推出的Hommage全新概念車采用輕量化CFRP,整車質量只有780kg。未來寶馬將要推出的電動汽車將更多地采用碳纖維,新電動車底盤也將在很大程度上采用碳纖維增強熱固性塑料。梅賽德斯奔馳SLR超級跑車,車身幾乎全部采用碳纖維復合材料,由于強化了碳纖維的應用,在碰撞中具有高效的能量吸收率。更值得一提的是該車在搭載240kg電池包的情況下整車車重不超過850kg。這一應用在降低整車質量的同時兼顧了汽車性能與安全,可見碳纖維復合材料對于平衡電動汽車電池包重量的顯著效果。
二、碳纖維復合材料
      碳纖維是一種含碳量在9 2% 以上的新型高性能纖維材料, 具有重量輕、高強度、 高模量、耐高溫、 耐磨、耐腐蝕、抗疲勞、導電、導熱和遠紅外輻射等多種優(yōu)異性能, 不僅是21世紀新材料領域的高科技產品, 更是國家重要的戰(zhàn)略性基礎材料, 政治、經濟和軍事意義十分重大。盡管碳纖維可單獨使用發(fā)揮某些功能, 然而, 它屬于脆性材料, 只有將它與基體材料牢固地結合在一起時, 才能利用其優(yōu)異的力學性能, 使之更好地承載負荷。因此, 碳纖維主要還是在復合材料中作增強材料。根據(jù)使用目的不同可選用各種基體材料和復合方式來達到所要求的復合效果。碳纖維可用來增強樹脂、碳、金屬及各種無機陶瓷, 而目前使用得最多、最廣泛的是樹脂基復合材料。用碳纖維與樹脂、金屬、陶瓷、玻璃等基體制成的復合材料, 廣泛應用于航空航天領域、體育休閑領域以及汽車制造、新型建材、信息產業(yè)等工業(yè)領域。
碳纖維增強復合材料是以各種樹脂、碳、金屬、陶瓷為基體材料的塑料,其根據(jù)基體材料可分為樹脂基復合材料(CFRP)、陶瓷基復合材料(CMC)和金屬基復合材料(MMC)。碳纖維增強環(huán)氧樹脂基復合材料的強度、剛度、耐熱性能是其它材料無法比擬的,其比強度、比模量均高于其他材料,拉伸強度比鋁、鋼都大,彎曲、壓縮、剪切等機械性能優(yōu)良。以樹脂和金屬為基體的復合材料在車身上的應用較為成熟。
(一)碳纖維復合材料特性
      碳纖維增強復合材料具有應用于車身制造的諸多優(yōu)勢。為了確保足夠的安全性能,在主承載車身結構件上汽車廠商通常要選擇強度,剛性及耐沖擊性能均很高的材料用于制作主承力結構件,這時環(huán)氧樹脂碳纖維增強復合材料就成為理想的材料選擇。環(huán)氧樹脂碳纖維增強復合材料具有可設計性、質輕高強、與同體積的鋁合金構件相比減重可達50%,耐沖擊,耐腐蝕抗疲勞,材料壽命長,此類材料制作的主承載車身結構件,不僅大大提高了汽車的安全性,而且降低了車重減少了燃油消耗,提高了經濟性,另外還改善了美觀性。
       1、碳纖維復合材料具有極高的比模量和比強度,是目前常用材料中最高的。 密度小、質量輕, 碳纖維的密度為1.5-2g/ , 相當于鋼密度的1 /4、鋁合金密度1/2,用其制成與高強度鋼具有同等強度和剛度的構件時,其重量可減輕70%左右。
1、碳纖維—環(huán)氧增強塑料與幾種材料特性的比較
材料種類
纖維含量體積比/%
密度/(g·cm-3)
拉伸強度/Mpa
彈性模量/Mpa
比強度/m
比模量/km
7.8
1000
214000
1.3
0.27
高級合金鋼
8.0
1280
210000
1.6
0.26
2.6
400
70000
1.5
0.27
2A12鋁合金
2.8
420
71000
1.5
0.25
玻璃增強塑料
60單向
2.0
1100
40000
5.5
0.2
碳纖維環(huán)氧塑料
高強度型
60單向
1.5
1400
130000
9.3
0.87
高模量型
60單向
1.6
1100
190000
6.2
1.2
      碳纖維復合材料具有比玻璃纖維更低的密度和更高的強度,因此比強度很高。另外,由于其密度方面的壓倒性優(yōu)勢,替代鋼材后,車體質量將是鋼材的25%左右,卻10倍于鋼強度。
      2、纖維復合材料的抗疲勞性能極佳。由于在疲勞載荷作用下的斷裂是材料內部裂紋擴展的結果,碳纖維增強復合材料中碳纖維與基體間的界面能有效阻止疲勞裂紋擴展,具有較高的斷裂韌性和假塑性,而外加載荷有增強纖維承擔因而疲勞強度極限比金屬材料和其他非金屬材料高很多。如下是三種材料疲勞強度的比較。
      3、碳纖維復合材料是汽車金屬材料最理想的替代材料,在碰撞中對能量的吸收率是鋁和鋼的4~5倍,減輕車身質量的同時,還能保證不損失強度或剛度,保持防撞性能。下面是碳纖維復合材料和其他材料的對比結果。
      4、碳纖維復合材料的工藝性和可設計性好,調整CFRP材料的形狀、排布、含量,可滿足構件的強度、剛度等性能要求,能用模具制造的構件可一次成型,減少緊固件和接頭數(shù)目,可以大大提高材料利用率。  
(二)碳纖維車身對純電動汽車續(xù)駛里程的影響
       純電動汽車在蓄電池充足電的狀態(tài)下按一定的行駛工況,能連續(xù)行駛的最大里程(km)稱為續(xù)駛里程。等速法測試續(xù)駛里程是在道路上讓車輛以固定的速度等速行駛,當蓄電池達到一定放電深度時,車輛駛過的距離(km)即為測量的續(xù)駛里程。等速工況續(xù)駛里程的計算: 假定純電動汽車在續(xù)駛里程測試過程中以速度km/h)等速行駛,當蓄電池總能量為(單位為kWh)時,純電動汽車在勻速行駛時的續(xù)駛里程s(單位為km)為:
                  2-1)
式中 —整車重力(N); —輪胎滾動阻力系數(shù);
       —空氣阻力系數(shù); — 迎風面積();
       —傳動系統(tǒng)機械效率; —電動機及控制器效率;
       —蓄電池的平均放電效率;
      —蓄電池的放電深度,在實際使用中,為了保護電池防止其完全 放 電受損,保證電池的壽命,一般要求% 。
由式2-1表明當選用碳纖維復合材料時G較小,續(xù)駛里程s就較大;當車身變輕后,蓄電池的安裝空間也會相對變的更加寬裕。
動力電池的容量主要是由純電動汽車的續(xù)駛里程覺得的,故動力電池容量為
                    (2-2)
式中—動力電池組的容量(Ah);
     —單位行駛里程消耗的能量();
     —動力電池的工作電壓()。
2-1帶入得到    2-3),由此說明當車身減輕時選擇的蓄電池容量也可以相應增大。但是電池數(shù)量、車重與安裝空間三者之間必然會有一個平衡點。
通過公式可以說明使用碳纖維復合材料減輕車身重量,對于電動汽車續(xù)駛里程的增加在理論上是可行的,具有實際的應用價值。
    (三)碳纖維復合材料研究現(xiàn)狀
      碳纖維生產工藝復雜,目前只集中于美國、日本等發(fā)達國家生產。其中,日本碳纖維產能占世界總產能的75%,在小絲束碳纖維生產方面占絕對優(yōu)勢;美國產能占14%,在大絲束碳纖維生產方面有較強的科研基礎。目前世界上具有規(guī)模化生產碳纖維能力的廠家主要有日本的三菱麗陽公司、東邦公司和美國的氰特工業(yè)公司(Cytec)、赫氏公司(Hexcel)。
201212月,寶馬與波音公司展開合作,共同研發(fā)碳纖維材料技術。目前,大眾也在爭取碳纖維技術伙伴,大眾旗下的蘭博基尼品牌已經與波音達成碳纖維方面的合作。碳纖維復合材料已經成為汽車和航空制造商之間爭奪的新陣地。
我國的碳纖維產能較低,產品以小絲束等低檔產品為主,T300碳纖維實現(xiàn)了國產化。相比于國際水平,國產碳纖維由于原絲質量等因素制約,產品強度低、均勻性和穩(wěn)定性較差。此外,我國碳纖維生產企業(yè)規(guī)模性、缺乏核心競爭力、新技術被國際專利覆蓋問題嚴重。
目前,我國的高性能PAN-CF將實現(xiàn)國產化,中科院山西煤炭研究所、中復神鷹碳纖維工程技術中心的碳纖維也逐漸從研發(fā)走向生產。
三、應用現(xiàn)狀及效果
       碳纖維復合材料具有質輕高強、高模量、減摩耐磨、熱導率大、自潤滑、耐腐、抗沖擊性好、疲勞強度大等優(yōu)越性。目前我國的電動汽車發(fā)展還未與汽車材料的減重結合起來,也只有個別高校研制過CFRP的電動車樣車。對于汽車生產商來說,碳纖維復合材料車身還具有集成化、模塊化、總裝成本低、投資小等優(yōu)點,避免了傳統(tǒng)車身的噴涂過程和相應的環(huán)保處理成本。
       由于碳纖維增強聚合物基復合材料有足夠的強度和剛度,其適于制造汽車車身、底盤等主要結構件的材料。目前,在賽車和高檔跑車之外,碳纖維增強復合材料可以很大程度地應用于傳統(tǒng)汽車中替代傳統(tǒng)零部件材料,如發(fā)動機系統(tǒng)、傳動系統(tǒng)、底盤系統(tǒng)。最重要的是車身,目前車體重量的3/4是鋼材,輕量化空間很大,碳纖維復合材料是車身材料的最好選擇。這種材料的替換應用同樣適用于電動汽車車身,它的應用將可大幅度降低汽車自重達4060,對汽車輕量化具有十分重要的意義,已成為汽車輕量化材料的重要選擇。
下面是碳纖維復合材料應用于車身的效果對比。
       碳纖維增強復合材料可極大減輕車身重量、節(jié)省燃料和合金。在航空領域,1kgCFRP可代替3kg鋁合金。同時,依靠其強度、剛度和能量吸收率優(yōu)勢,可以極大地降低輕量化帶來的汽車安全系數(shù)降低的風險。
四、大規(guī)模應用的阻礙因素
       在技術和價格方面,以上世紀90年代的鎂合金為例,由于其價格和技術瓶頸因素當時還作為一種潛在的汽車用材料,而現(xiàn)在,大規(guī)模開發(fā)和應用的時代已經到來。然而當鎂合金供大于求而廉價出口的時候,我國汽車行業(yè)卻沒有做好準備,用量極少,遠遠落后于國外汽車用料水平。兩者的不對稱同時制約著兩個行業(yè)的發(fā)展,而在國際應用力水平相當?shù)那闆r下,這一現(xiàn)象對我國汽車的發(fā)展制約很大。
      如今碳纖維復合材料也面臨這樣一個處境,當我們真正開始涉足這一新材料應用于車身領域時,兩者的相互推動作用是顯然的。碳纖維復合材料與汽車產業(yè)結合真正面臨的挑戰(zhàn)不是滿足技術層面的需求,而是在何時、該如何涉足這一領域。對此,我們要了解這樣一個事實:碳纖維復合材料早已呈現(xiàn)出供不應求之勢,其絕對優(yōu)越性迫使生產廠家不得不從長遠角度考慮它。英國克蘭菲爾德大學的研究小組已經找到了大量生產碳纖維車身的方法,生產碳纖維汽車的成本最終可能比現(xiàn)在的金屬外殼汽車還低,因為制造商不再需要投資昂貴的壓制工具。我們必須加快進軍這一領域,著手研發(fā)應用,為技術的成熟及市場的開放做好準備。
       碳纖維復合材料與汽車完美結合卻未欣欣向榮的原因,除了其本身的技術因素外,還有其他因素:
       1、性價比也就是成本是生產商必須考慮的。輕量化的成本在一定程度上會成為后期節(jié)能的前期投入,反映在價格上就是整車的價位比較高。
       2汽車發(fā)展和產品環(huán)境。金屬材料所占的市場及成熟的行業(yè)體系是碳纖維復合材料發(fā)展的主要障礙。碳纖維復合材料的技術及產品發(fā)展周期很難得到汽車投資者的的青睞,況且針對汽車與碳纖維復合材料的規(guī)模性生產結合需要一定的前期投資。
       3、供應商的結構和能力。碳纖維復合材料供應商四分五裂,在資源和生產能力上有限,不具設計、生產、實現(xiàn)汽車各種性能要求的系統(tǒng)研發(fā)能力。
       4、風險。開辟市場要能夠充分應對來自金屬材料安全性升級的壓力,這需要一定的技術突破,否則輕量化也就失去了它的意義,這是工程師們必須考慮的。
     顯然,近年來借助軟件研發(fā)工具進行結構分析、快速成型工藝研究,在一定程度上掃清了碳纖維復合材料與汽車結合的障礙,而最主要的障礙在于工程師。來自汽車設計和制造行業(yè)的制造工程師在全新的材料領域套用金屬材料的設計依據(jù)、公式和安全系數(shù)往往遇到困惑;而碳纖維復合材料行業(yè)的工程師無法做到在零件設計方面的靈活運用來替代金屬材料。
五、引入方式
     如何將碳纖維復合材料引入汽車系列產品尤其是電動汽車系列產品是我們必須考慮的關鍵步驟,要知道,現(xiàn)今的汽車是各種功能型材料的完美組合體。碳纖維復合材料應用于車身的優(yōu)點顯而易見,然而目前成本居高不下;玻璃纖維價格低,技術較為成熟,在性能方面具有較好的斷裂應力應變能力,但缺乏剛性。可以考慮將兩種材料按適當比例混合成復合材料,綜合兩種纖維增強復合材料的性能,從而減少碳纖維的用量,降低成本。
盡管全碳纖維方案在當前技術水平下應用于普通汽車存在多重阻力,而且把如此全新的技術引進到白車身技術,并進行規(guī)模化生產也有巨大風險,但是這個風險會隨著碳纖維復合材料工藝及應用的日趨成熟而降低。碳纖維復合材料在汽車行業(yè)的引進結果是一個企業(yè)的決策者從少量小型、非關鍵部件的首次低調引進,應用于汽車系列產品,并使其發(fā)展的多個載體不斷改進、成熟的最終結果。初次與當前材料競爭要以研發(fā)應用與汽車的小規(guī)模性結合的模式,使設計者、產品工程師和成本核算部門之間聯(lián)系更緊密,同時也形成了制造商與供應商的長期合作。需求形成產業(yè),使供應商逐漸融入這個增值鏈,整個技術研發(fā)、產品轉化、產業(yè)鏈將會由小規(guī)模進入汽車行業(yè)的大規(guī)模應用中。
結論
     21世紀是復合材料的時代,選擇性能優(yōu)越的復合材料以滿足時代需要是當務之急。而在低碳節(jié)能的今天,碳纖維復合材料幾乎是目前可用的最能讓汽車減重的完美材料,可以極大地解決電動汽車由于電池和動力技術在節(jié)能道路上步履維艱的現(xiàn)狀,加快電動汽車低碳的步伐。與此同時,使用碳纖維復合材料替代傳統(tǒng)的車身材料能很好的減輕車身重量,對汽車輕量化這一課題有著非常重要的實際意義,尤其是在電動汽車上彌補了電池的比能量質的不足,在減輕車身自重的同時增大電池的安裝空間,增大了電動汽車的續(xù)駛里程,這對目前電動汽車的推廣有著非常重要的意義。
隨著人們環(huán)保意識的提高及環(huán)保法律的完善,電動汽車在汽車領域所占的比重將逐漸增加,因此,電動汽車所面臨的一些困境都將逐漸被克服以滿足當前社會的需要,而電動汽車更加節(jié)能化的時代必然會以碳纖維復合材料的逐漸應用拉開序幕,碳纖維復合材料作為未來汽車材料發(fā)展的主流,必然會在今后的研發(fā)中占據(jù)不可替代的位置。碳纖維復合材料性能、壽命、回收都會隨著應用而展開研究。我們應該堅信碳纖維復合材料在電動汽車領域的應用是前景光明的!
 
 
[ 復材學院搜索 ]  [ 加入收藏 ]  [ 告訴好友 ]  [ 打印本文 ]  [ 違規(guī)舉報 ]  [ 關閉窗口 ]

 

 
?
推薦圖文
推薦復材學院
點擊排行
(c)2013-2020 復合材料應用技術網 All Rights Reserved

  京ICP備14000539號-1

關注復合材料應用技術網微信